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Context

● Modular dialogue system.
● Most modules are rule based or classifiers requiring hard feature engineering.
● Available data and computing power helped developing data-driven systems

and end-to-end architectures.

Serban, I.V., Lowe, R., Henderson, P., Charlin, L. and Pineau, J., 2015. A survey of available corpora for building data-driven dialogue systems. arXiv preprint 
arXiv:1512.05742.
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Generative systems

Sequence2Sequence architecture:

● Encoder compresses the input into one vector.
● The decoder decodes the encoded vector into the target text.
● In the decoder, the output at step n is the input at step n+1.

https://isaacchanghau.github.io/2017/08/02/Seq2Seq-Learning-and-Neural-Conversational-Model/
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Sutskever, I., Vinyals, O. and Le, Q.V., 2014. Sequence to sequence learning with neural networks. In NIPS.



  

● Seq2seq model is widely used in different domains: Image processing, signal processing, 
query completion, dialogue generation ..etc.

Generative systems
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Task-oriented vs open domain 
dialogue systems

Open domain dialogue systems

● Engaging in conversational interaction without necessarily
being involved into a task that needs to be accomplished.

● Replika is an AI friend.

http://slideplayer.com/slide/4332840/ 8/19



  

Task-oriented vs open domain 
dialogue systems

Task-oriented dialogue systems

● Involves the use of dialogues to accomplish a specific task.
● Making restaurant booking, booking flight tickets ..etc.

http://slideplayer.com/slide/4332840/ 9/19



  

Automatic assistance

● In this work, we are interested in automatic assistance for problem solving.

● In task-specific domains, generative systems may fail.

● Generalization problem “thank you!” and “Ok”.

● Need to provide very accurate and context related responses.

Retrieval-based dialogue systems

Response database

Context Context

Set of candidate
responses

Response
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Task

Given a conversation 
context and a set of 

candidate responses, pick 
the best response

Retrieval based 
conversational systems

A ranking task

A: Hello I am John, I need help
B: Welcome, how can we help ?
A: I am looking for a good restaurant in Paris
B: humm which district exactly ?
A: well, anyone ..

Context

Candidate Utterances
● Sorry I don’t know 
● Can you give me more detail please ?
● There is a nice Indian restaurant in Saint-Michel
● I don’t like it
● It’s a nice weather in Paris in summer
● Thnk you man !
● you deserve a cookie
● Gonna check it right now

0.75
0.81
0.92
0.32
0.85
0.79
0.24
0.25

11/19



  

Word representation
The cat is on the floor

One hot encoding
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● Sparse representation.
● Large vocabulary.
● Order of words in the sentence.
● No assumption about word similarities.
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Word embeddings (300d)
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● Low dimensional continuous space.
● Meaning = context of word.
● Semantically related words have near vectors.

12/19https://machinelearningmastery.com/what-are-word-embeddings/



  

Our response retrieval system

Context

LSTM LSTM LSTM LSTM

LSTMLSTMLSTM LSTM

Candidate response
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An improved dual encoder 

- No need to learn extra parameter matrix.
- End to end training.
- We learn instead a similarity between context and response 
vectors.
- BiLSTM cells perform better.

13/19Lowe, R., Pow, N., Serban, I. and Pineau, J., 2015. The ubuntu dialogue corpus: A large dataset for research in unstructured multi-turn dialogue systems. arXiv 
preprint arXiv:1506.08909.



  

Ubuntu Dialogue Corpus

- Large dataset that contains chat logs extracted from IRC Ubuntu channel 
2004-2015.
- Multi-turn dialogues corpus between 2 users.
- Application towards technical support.
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Ubuntu Dialogue Corpus

An example extracted from the Ubuntu Dialogue Corpus
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Evaluation
Evaluation metric : Recall @ k

Given 10 candidate response what is the probability of ranking the good 
response on top of k ranked responses

Evaluation results using Recall@k metrics

16/19
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Evaluation
Error analysis is important in order to understand why the system fails and to address 
them later. 

- General responses.
- Are these really bad predictions?
- Importance of having good dataset. 17/19



  

Conclusion and perspectives

● Interest : automatic assistance in problem solving.

● Focus on retrieval systems : more suitable for our task (because of generalization 
problem of generative systems).

● We built a system that learns the similarity between the context and the response 
in order to distinguish between good from bad responses.

● Interesting results, that we can improve by doing deep error analysis.

● Future: using pairwise ranking and attention mechanism.

● Evaluate our approach on other corpora and on other languages (Arabic, Chinese 
..).
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Thank you !

● Code implemented in python using Keras with Tensorflow in backend.
● Source code: https://github.com/basma-b/dual_encoder_udc
● Contribution paper, poster and presentation are available on my blog:

● https://basmaboussaha.wordpress.com/2017/10/18/implementation-of-dual-enco
der-using-keras/

https://github.com/basma-b/dual_encoder_udc
https://basmaboussaha.wordpress.com/2017/10/18/implementation-of-dual-encoder-using-keras/
https://basmaboussaha.wordpress.com/2017/10/18/implementation-of-dual-encoder-using-keras/
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