Thread Reconstruction in Conversational Data using Neural Coherence Models

Dat Tien Nguyen 1 Shafiq Joty 2 Basma El Amel Boussaha 3 Maarten de Rijke 1

¹University of Amsterdam ²Nanyang Technological University ³University of Nantes

Problem Definition and Solution

- ► Given the messages of a thread, construct the thread (reply-to) structure
- ► Our solution
 - ▶ Train a **neural coherence model** based on entity-grid representation of a thread.
 - ▶ Use the model to compute coherence scores of all possible reconstructions
 - ▶ Select the one with the highest score

Thread Entity-Grid Representation

Author: barspinboy Post ID: 1

 s_0 : im having troubles since i uninstall some of my apps, then when i checked my system registry bunch of junks were left behind by the apps i already uninstall. s_1 : is there any way i could clean my registry aside from expensive registry cleaners.

Author: kees bakker Post ID: 2

 s_2 : use regedit to delete the 'bunch of junks' you found. s_3 : regedit is free, but depending on which applications it were ..

*s*₄: it's somewhat doubtful there will be less crashes and faster setup.

Author: willy **Post ID:** 3

*s*₅: i tend to use ccleaner (google for it) as a registry (and system) cleaner.

s₆: using its defaults does pretty well.

*s*₇: in no way will it cure any hardcore problems as you mentioned, "crashes", but it should clean some of the junk out.

s₈: i further suggest, ..

Author: caktus Post ID: 4

s9: try regseeker.

 s_{10} : it's free and pretty safe to use automatic.

 s_{11} : then clean out temp files (don't compress any files or use indexing.)

 s_{12} : if the c drive is compressed, then uncompress it.

Author: barspinboy Post ID: 5

s₁₃: thanks guyz!

 s_{14} : i tried all those suggestions you mentioned ccleaners regedit defragmentation and uninstalling process. s_{15} : it all worked out and i suffer no more from crashes

and ..

Figure: A truncated forum thread from CNET with five posts by temporal order.

Table: Transition of some entities across tree structure of the thread example. Legend: S stands for subject, O for object, X for a role other than subject or object, and – means that an entity does not appear in the sentence.

Tree structure	depth	CLEANER	REGEDIT	TROUBLES	SYSTEM	JUNKS	APPS	REGISTRY	BUNCH
s_0	0	_	_	_	O	Χ	Χ	Ο	0
s_1	1	O	_	_	_	_	_	O	_
S_2 S_5 S_9	2	-0-	0			X		-0-	0
s_3 s_6 s_{10}	3		S						
s_4 s_7 s_{11}	4					-X-			
$S_8 = S_{12}$	5								

Figure: A Convolutional Neural Network (CNN) architecture for modeling local coherence.

Grid CNN: Convolutional Neural Network over Entity Grid

- ► Transform each entry in the grid into a distributed representation
- ► Use convolution and pooling layers to learn high-level features
- ► Model entity transitions across tree structure

Pairwise end-to-end training

- ▶ Input: ordered pairs (T_i, T_j)
 - $ightharpoonup T_i$ is **gold** tree of original thread
 - $ightharpoonup T_i$ is a valid but **false** tree
- $\triangleright T_j$ respects the chronological order of the posts
- ightharpoonup Use pairwise ranking approach to learn θ by minimizing the objective:

$$\Im(\theta) = \max\{0, 1 - \phi(G_i|\theta) + \phi(G_j|\theta)\} \tag{1}$$

where G_i and G_j are entity grids of T_i and T_j , respectively θ : set of CNN parameters

Testing

- ► Given posts of a thread, predict coherence scores of all possible candidate trees
- ► Choose the tree with the highest coherence score

Experiment

Table: CNET Threads with less than 6 posts

# Train-Dev-Test	Avg. #Posts	Avg. # Sent	Non-trivial replies
1,500-200-500	3.6	27.64	57%

Baselines

All-previous: Linking a post to its previous post in the temporal order

All-first: Linking all the posts to the first post
COS-sim: Linking a post to one of the previous
posts with which it has the highest cosine similarity

Table: Performance on the thread reconstruction task.

		Tree-level	Edge-level		
		Acc	$\overline{F_1}$	Acc	
	All-previous	20.00	58.45	65.62	
_	All-first	17.60	54.90	60.27	
	COS-sim	16.80	53.58	58.75	
	Grid-CNN	26.40	60.55	66.12	

Conclusion


Our contribution

- ► A neural approach to model the coherence of an entire thread for the thread reconstruction task
- ► Pairwise ranking method to train the model end-to-end
- ► Improves performance over trivial baselines

Future work

- ► Include dialogue act information
- Experiment with threads having more than 5 posts

Neu-IR 2017 t.d.nguyen@uva.nl