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1. Overview

- The next utterance ranking task

5. Multi-Level Retrieval-Based Dialog System
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9. Error Analysis
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2. Motivations . _

We believe that the existing retrieval-
based dialogue systems sutfer from the
following drawbacks.

- The complexity of their

Word Level Similarity Matrix

Figure 1: Architecture of our multi-level context response matching dialogue system.

6. Experiments

* We proposed an end-to-end domain
independent retrieval-based dialog
system that matches the context with
the correct response on two levels.

- We showed that a simple end-to-end
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tually simpler.

©® Encode the context and the response
with a shared LSTM and compute
their cross product: sequence-level
similarity.

®In parallel, compute a dot product
between the embedding matrices and
encode 1t with another LSTM:
word-level similarity.

- Our system outperforms several complex baselines with a good margin.

- Our system neither matches each context turn with the candidate response nor
uses complex cross- and self-attention in addition to matching and
accumulation mechanisms but achieves almost the same performance as the

DAM.

7. Visualization

8. System Ablation

» We plan to improve our system
while keeping the simplicity of the
approach.

* We encourage the scientists to care
about the complexity of their
architectures.

- We want to enrich the text with
discursive information such as
dialogue acts and rhetorical

- We visualize the Word Level
Similarity Matrix.

- Having only one similarity level
results 1n lower scores.

® Concatenate both vectors and relations.

transform them 1nto a probability

- The results of the error analysis

- Important (key) words 1n the context - Even with only one similarity level,

using a FFNN: response ranking
SCore.

4. Datasets & Metrics

- Ubuntu Dialogue Corpus (UDC): a
domain specific corpus of Ubuntu
related English chats.

* Douban Conversation Corpus: an
open domain corpus extracted from
Douban a Chinese social network.

- We used the Recall @k,
Precision@ 1, MRR and MAP as
evaluation metrics.

and the response were recognized by
our system and were given higher
SCOTES.
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our system outperforms several
baselines.

- Having only word similarity
information yields to a better
performance compared to only
having sequence similarity.

- Both similarity levels are
complementary.

Code and data

https://github.com/basma-b/multi_level_chatbot

shows important information about
the impact of the dataset on the
performance of the system.

* Web: https://basma-b.github.10/

°* Email: basma.boussaha@univ-nantes.fr
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